

OXFORD CAMBRIDGE AND RSA EXAMINATIONS

Advanced Subsidiary General Certificate of Education Advanced General Certificate of Education

MATHEMATICS

4733

Probability & Statistics 2

Wednesday

22 JUNE 2005

Afternoon

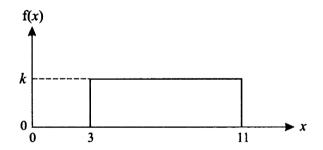
1 hour 30 minutes

Additional materials: Answer booklet Graph paper List of Formulae (MF1)

TIME

1 hour 30 minutes

INSTRUCTIONS TO CANDIDATES


- Write your name, centre number and candidate number in the spaces provided on the answer booklet.
- Answer all the questions.
- Give non-exact numerical answers correct to 3 significant figures unless a different degree of accuracy is specified in the question or is clearly appropriate.
- You are permitted to use a graphical calculator in this paper.

INFORMATION FOR CANDIDATES

- The number of marks is given in brackets [] at the end of each question or part question.
- The total number of marks for this paper is 72.
- Questions carrying smaller numbers of marks are printed earlier in the paper, and questions carrying larger numbers of marks later in the paper.
- You are reminded of the need for clear presentation in your answers.

1	It is desired to obtain a random sample of 15 pupils from a large school. One pupil suggests listing all the pupils in the school in alphabetical order and choosing the first 15 names on the list.						
	(i)	Explain why this method is unsatisfactory.	[2]				
	(ii)	Suggest a better method.	[2]				
2	The	ontinuous random variable has a normal distribution with mean 25.0 and standard deviation probability that any one observation of the random variable is greater than 20.0 is 0.75. Find the of σ .					
3	(a)	The random variable X has a B(60, 0.02) distribution. Use an appropriate approximation to $P(X \le 2)$.	find [3]				
	(b)	The random variable Y has a Po(30) distribution. Use an appropriate approximation to $P(Y \le 38)$.	find [5]				
4	The height of sweet pea plants grown in a nursery is a random variable. A random sample of 50 plants is measured and is found to have a mean height 1.72 m and variance 0.0967 m ² .						
	(i)	Calculate an unbiased estimate for the population variance of the heights of sweet pea plants	s. [2]				
	(ii)	Hence test, at the 10% significance level, whether the mean height of sweet pea plants grow the nursery is 1.8 m, stating your hypotheses clearly.	n by [7]				
5	The	random variable W has the distribution $B(30, p)$.					
	(i)	Use the exact binomial distribution to calculate $P(W = 10)$ when $p = 0.4$.	[2]				
	(ii)	Find the range of values of p for which you would expect that a normal distribution could be as an approximation to the distribution of W .	used [3]				
	(iii)	Use a normal approximation to calculate $P(W = 10)$ when $p = 0.4$.	[6]				

- A factory makes chocolates of different types. The proportion of milk chocolates made on any day is denoted by p. It is desired to test the null hypothesis $H_0: p=0.8$ against the alternative hypothesis $H_1: p<0.8$. The test consists of choosing a random sample of 25 chocolates. H_0 is rejected if the number of milk chocolates is k or fewer. The test is carried out at a significance level as close to 5% as possible.
 - (i) Use tables to find the value of k, giving the values of any relevant probabilities. [3]
 - (ii) The test is carried out 20 times, and each time the value of p is 0.8. Each of the tests is independent of all the others. State the expected number of times that the test will result in rejection of the null hypothesis.
 - (iii) The test is carried out once. If in fact the value of p is 0.6, find the probability of rejecting H_0 .
 - (iv) The test is carried out twice. Each time the value of p is equally likely to be 0.8 or 0.6. Find the probability that exactly one of the two tests results in rejection of the null hypothesis. [4]
- 7 The continuous random variable X has the probability density function shown in the diagram.

- (i) Find the value of the constant k. [2]
- (ii) Write down the mean of X, and use integration to find the variance of X. [5]
- (iii) Three observations of X are made. Find the probability that X < 9 for all three observations. [3]
- (iv) The mean of 32 observations of X is denoted by \overline{X} . State the approximate distribution of \overline{X} , giving its mean and variance. [3]

[Question 8 is printed overleaf.]

4733/S05 **[Turn over**

- 8 In excavating an archaeological site, Roman coins are found scattered throughout the site.
 - (i) State two assumptions needed to model the number of coins found per square metre of the site by a Poisson distribution. [2]

Assume now that the number of coins found per square metre of the site can be modelled by a Poisson distribution with mean λ .

(ii) Given that $\lambda = 0.75$, calculate the probability that exactly 3 coins are found in a region of the site of area $7.20 \,\mathrm{m}^2$.

A test is carried out, at the 5% significance level, of the null hypothesis $\lambda = 0.75$, against the alternative hypothesis $\lambda > 0.75$, in Region LVI which has area 4 m².

- (iii) Determine the smallest number of coins that, if found in Region LVI, would lead to rejection of the null hypothesis, stating also the values of any relevant probabilities. [4]
- (iv) Given that, in fact, $\lambda = 1.2$ in Region LVI, find the probability that the test results in a Type II error.

7

Final Mark Scheme (not for publication)

4733 Statistics 2

L II	iiai ivia	rk Scheme (not for publication)		4/33 Statistics 2	
1	(i)	Method is biased because many pupils	B1	"Biased" or equivalent stated, allow "not random"	7
	()	cannot be chosen	B1 2	<u>-</u>	
	(ii)	Allocate a number to each pupil	B1	State "list numbered"	-
	()	Select using random numbers	B1 2	Use random numbers [not "hat"]	
2		$20 - 25 = \Phi^{-1}(0.25) = -0.674$	M1	Standardise and equate to Φ^{-1} [not .7754 or .5987]	1 .
		σ (0.20)	B1	z in range [-0.675, -0.674], allow +	ce
		$\sigma = 5 \div 0.674$	M1	(±) $5 \div z$ -value [not $\Phi(z)$ or 0.75]	
		= 7.42	A1 4		
				[SR: σ^2 : M1B1M0A0	
				cc: M1B1M1A0]	
3	(a)	Po(1.2)	B1	Po(1.2) stated or implied	-
3	(4)	Tables or correct formula used	M1	Correct method for Poisson probability, allow "1 -"	
		0.8795	A1 3	1	
	(b)	N(30, 30)	BI	p	-
	(0)	29 5 20 5 4 662	B1	Normal, mean 30 stated or implied	
		$\frac{38.5 - 30}{\sqrt{30}} [= 1.55]$	MI	Variance 30 stated or implied, allow $\sqrt{30}$ or 30^2	
			A1	Standardise using $\sigma^2 = \mu$, allow $\sqrt{\text{ or cc errors}}$	
		$[\Phi(1.55) =]$ 0.9396	1	√μ and 38.5 both correct	
				Answer in range [0.939, 0.94(0)]	4
4	(i)	$\hat{\sigma}^2 = \frac{50}{49} \times 0.0967 = 0.0987$	M1	Use $\frac{n}{n-1} \times s$ or s^2 , allow $\sqrt{}$	
	• • • • • • • • • • • • • • • • • • • •	49	A1 2	Answer, a.r.t. 0.0987	
	(ii)	H_0 : $\mu = 1.8$, H_1 : $\mu \neq 1.8$	B1B1	Hypotheses correctly stated in terms of μ	1-22 102
	(11)	where μ is the population mean	5,5,		1-times
		• •		SR: μ wrong/omitted: B1 both, but \overline{X} : B0	66
	α, β:	$z = \frac{(1.72 - 1.8)}{\hat{\sigma}/\sqrt{50}} = -1.8(006)$	M1	Standardise with \sqrt{n} , allow +, biased σ , $\sqrt{\text{errors}}$	
		$\hat{\sigma}/\sqrt{50}$	Al	$z = -1.80 \pm 0.01$, don't allow +	
	α:	-1.8 < -1.645	B1√	Compare $\pm z$ with ± 1.645 , signs consistent	
	β:	$\Phi(-1.8) = 1 - 0.9641 < 0.05$	B1	Explicitly compare $\Phi(z)$ with 0.05, correct tail	
	γ:	CV 1.8 – k.σ/√50	M1	Correct expression for CV, – or \pm , k from Φ^{-1}	
	1.	k = 1.645, CV = 1.727	AIV	$CV = 1.727$, $\sqrt{\text{on their } k$, ignore upper limit	
		1.72 < 1.727	В1√	k = 1.645 and compare CV with 1.72	
	Reject		M1	Reject H_0 , correct method, needs $\sqrt{50}$, $\mu = 1.8$;	
	110,000	••0	****	allow cc, \sqrt{c} or k error or biased σ estimate	
	Signifi	icant evidence that mean height is not 1.8	A1√-7	Conclusion stated in context	
	2.6		''' '	[SR: 1.8, 1.72 interchanged: B0B0M1A0B1M0]	
5	(i)	30 C ₁₀ (0.4) 10 (0.6) 20 or 0.2915 – 0.1763	MI	Correct formula or use of tables	-
3	(1)	= 0.1152	1	Answer, a.r.t. 0.115	
	(ii)	30p > 5 so $p > 1/6$	-+	20 m upod aclett sales to 20 at 30 at	-
	(11)		M1 M1	30p used, or both values from 30p or 30p or 30p	.
		30q > 5 so $q > 1/6$	IVI I	30q or 30pq used 30pm 30pm $= 1/6 or 0.211 , allow \leq$	917
	7:::5	$1/6$	A1 3	Either $1/6 or 0.211 , allow \leq$	-
	(iii)	N(12, 7.2)	B1	12 seen	
		$\frac{10.5 - np}{\sqrt{1 - np}}$ and $\frac{9.5 - np}{\sqrt{1 - np}}$	B1	7.2 or 2.683 seen, allow 7.2 ²	
		\sqrt{npq} \sqrt{npq}	M1	Both standardised, allow wrong/no cc, npq	
		$\Phi(-0.559) - \Phi(-0.9317)$	A1√	\sqrt{npq} , 10.5 and 9.5 correct, \sqrt{npq} on their \sqrt{npq}	
		= 0.8243 - 0.7119 = 0.1124	M1	Correct use of tails	
		0.0243 0.7117 0.1124	A1 6	Answer, in range [0.112, 0.113]	
				[SR: $\frac{1}{\sqrt{2-\sqrt{3}}}e^{-\frac{1}{2}\frac{(10-12)^2}{7.2}}$ M1A1, answer A2]	
				[SR: $\frac{1}{\sqrt{2}-7.2}e^{\frac{1}{2}-7.2}$ M1A1, answer A2]	
				$\sqrt{2\pi} \times 1.2$	_

4733 Statistics 2

6 (i)	$R \sim B(25, 0.8)$	Bi		B(25, 0.8) stated or implied, e.g. from N(20, 4)
• • •	$P(R \le 16) = 0.0468, P(R \le 17) = 0.1091$	M1		One relevant probability seen [Normal: M0]
	k=16	A1	3	
(ii)	20 <i>p</i>	M1		$20 \times \text{their } p \text{ or } 20 \times 0.05$
` '	= 0.936	A 1	2	Answer, a.r.t. 0.936, i.s.w.
(iii)	$P(R \le 16 \mid p = 0.6)$	M1		Find $P(R \le k \mid p = 0.6)$
()	= 0.7265	Al	2	l ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '
(iv) c		M1		"Tree diagram" probability
(11)	= 0.38665	A1		Value in range [0.38, 0.39]
	$2 \times p' \times (1-p')$	M1		Correct formula, including 2, any p'
	= 0.474	A1	4	
or β:	$0.8 \text{ A} 0.8 \text{ R} .5^2 \times .9532 \times .0468 = .0112$	M1		$p_1q_2 + p_2q_1$ etc (0.5 not needed)
	0.8 R 0.8 A $.5^2 \times .0468 \times .9532 = .0112$	A1		4 cases, $\sqrt{\text{ on their } ps \text{ and } qs, 0.5 \text{ not needed}}$
	0.6 A 0.8 R $.5^2 \times .2735 \times .0468 = .0032$	F(-15		e.g. $2(p_1q_2 + p_2q_1)$
	0.6 R 0.8 A $.5^2 \times .7265 \times .9532 = .1731$	MI		Completely correct list of cases and probabilities,
	$0.8 \text{ A} 0.6 \text{ R} .5^2 \times .9532 \times .7265 = .1731$	8.55		including 0.5
	0.8 R 0.6 A $.5^2 \times .0468 \times .2735 = .0032$	A1		Answer in range [0.47, 0.48]
	0.6 A 0.6 R $.5^2 \times .2735 \times .7265 = .0497$			11115 (101 1111 1111 111 1111 1111 1111
	0.6 R 0.6 A $.5^2 \times .7265 \times .2735 = .0497$	<u> </u>		
7 (i)	(11-3)k=1	M1		Use area = 1 [e.g. $\int kx dx = 1$ with limits 3, 11]
	k = 1/8	Al	2	
(ii)	$\mu = \frac{1}{2}(3 + 11) = 7$	B1		Mean 7, cwd
	r^{11} r^{3} r^{11}	MI		Attempt $\int x^2 f(x) dx$, correct limits
	$\int_{3}^{11} \frac{1}{8} x^2 dx = \left[\frac{x^3}{24} \right]_{3}^{11} [= 54 \frac{1}{3}]$	Al		Indefinite integral $\frac{x^3}{3k}$, their k
	$\sigma^2 = 54 \frac{1}{3} - 7^2$			Subtract their μ^2
	$=5\frac{1}{3}$	M1		Correct answer, $5\frac{1}{3}$ or a.r.t. 5.33
	<u> </u>	A1	5	
(iii)	$P(X < 9) = 6k$ [= $\frac{3}{4}$]	B1√		Correct p for their k
	$(\frac{3}{4})^3$	Ml	_	Work out their p^3 , 0
	= 27/64 or 0.421875	A1	. 3	
(iv)	Normal	B1		"Normal" distribution stated
	Mean is 7	B1√		Mean same as in (ii) √
	Variance is $5\frac{1}{3} \div 32 \ (=\frac{1}{6})$	B1√	3	Variance is [(iii) \div 32] $\sqrt{ [not \sqrt{errors}]}$
8 (i)	Coins occur at constant average rate	BI		One contextualised condition, e.g. independent
` '	and independently of one another	B1	2	l
				in hoards" ["singly" not enough]. Allow "They"
(ii)	$R \sim \text{Po}(5.4)$	B1		Poisson (5.4) stated or implied
` '	$e^{-5.4} \frac{5.4^3}{100} = 0.1185$	MI		Correct formula, any λ
	$e^{-3.4} = 0.1185$	A1	3	l • • •
(iii)	$R \sim \text{Po}(3)$	 B1		Poisson (3) stated or implied
(111)	Tables, looking for 0.05 or 0.95	M1		Evidence of correct use of tables
	P($R \ge 7$) = 0.0335			One relevant correct probability seen
	•	A1√ A1	4	l
Z:N	Therefore smallest number is 7			\
(iv)	$R \sim \text{Po}(4.8)$	B1		Poisson (4.8) used
	Type II error is $R < 7$ when $\mu = 4.8$	M1	•	Correct context for Type II error, $\sqrt{\text{on their } r}$
	P(<7) = 0.7908	Αl	3	$P(<7)$, a.r.t. 0.791, c.w.o. $[P(\ge 7): M0]$